Hands-on Exercise 3

Author

Eugene Toh

Published

August 30, 2024

1st Order Spatial Point Patterns Analysis Methods

Spatial Point Pattern Analysis (SPPA) is a method used to evaluate the pattern or distribution of a set of points on a surface. To begin with, we need to gather data on the locations of these childcare centres and their corresponding coordinates. We can use geographic information systems (GIS) software to do this. Once we have this data, we can then analyze it using SPPA. The first step is to identify the spatial point processes that exist within a given area.

After identifying these patterns, we can determine whether there are any locations with higher concentrations of childcare centres. This information can be used to gain insights into possible trends or patterns in the distribution of these centres, and help policy makers make informed decisions about where new centres should be located.

Installing and loading R packages

In this hands-on exercise, five R packages will be used, they are:

  • sf, a relatively new R package specially designed to import, manage and process vector-based geospatial data in R.

  • spatstat, which has a wide range of useful functions for point pattern analysis. In this hands-on exercise, it will be used to perform 1st- and 2nd-order spatial point patterns analysis and derive kernel density estimation (KDE) layer.

  • raster which reads, writes, manipulates, analyses and model of gridded spatial data (i.e. raster). In this hands-on exercise, it will be used to convert image output generate by spatstat into raster format.

  • maptools which provides a set of tools for manipulating geographic data. In this hands-on exercise, we mainly use it to convert Spatial objects into ppp format of spatstat.

  • tmap which provides functions for plotting cartographic quality static point patterns maps or interactive maps by using leaflet API.

pacman::p_load(sf, raster, spatstat, tmap, tidyverse)
childcare_sf <- st_read("data/child-care-services-geojson.geojson") %>%
  st_transform(crs = 3414)
Reading layer `child-care-services-geojson' from data source 
  `/home/tropicbliss/GitHub/quarto-project/Hands-on_Ex/Hands-on_Ex03/data/child-care-services-geojson.geojson' 
  using driver `GeoJSON'
Simple feature collection with 1545 features and 2 fields
Geometry type: POINT
Dimension:     XYZ
Bounding box:  xmin: 103.6824 ymin: 1.248403 xmax: 103.9897 ymax: 1.462134
z_range:       zmin: 0 zmax: 0
Geodetic CRS:  WGS 84
sg_sf <- st_read(dsn = "data", layer="CostalOutline")
Reading layer `CostalOutline' from data source 
  `/home/tropicbliss/GitHub/quarto-project/Hands-on_Ex/Hands-on_Ex03/data' 
  using driver `ESRI Shapefile'
Simple feature collection with 60 features and 4 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 2663.926 ymin: 16357.98 xmax: 56047.79 ymax: 50244.03
Projected CRS: SVY21

In this case, CostalOutline is the name of the Shapefile.

mpsz_sf <- st_read(dsn = "data", layer = "MP14_SUBZONE_WEB_PL")
Reading layer `MP14_SUBZONE_WEB_PL' from data source 
  `/home/tropicbliss/GitHub/quarto-project/Hands-on_Ex/Hands-on_Ex03/data' 
  using driver `ESRI Shapefile'
Simple feature collection with 323 features and 15 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: 2667.538 ymin: 15748.72 xmax: 56396.44 ymax: 50256.33
Projected CRS: SVY21
st_crs(sg_sf)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]
st_crs(mpsz_sf)
Coordinate Reference System:
  User input: SVY21 
  wkt:
PROJCRS["SVY21",
    BASEGEOGCRS["SVY21[WGS84]",
        DATUM["World Geodetic System 1984",
            ELLIPSOID["WGS 84",6378137,298.257223563,
                LENGTHUNIT["metre",1]],
            ID["EPSG",6326]],
        PRIMEM["Greenwich",0,
            ANGLEUNIT["Degree",0.0174532925199433]]],
    CONVERSION["unnamed",
        METHOD["Transverse Mercator",
            ID["EPSG",9807]],
        PARAMETER["Latitude of natural origin",1.36666666666667,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8801]],
        PARAMETER["Longitude of natural origin",103.833333333333,
            ANGLEUNIT["Degree",0.0174532925199433],
            ID["EPSG",8802]],
        PARAMETER["Scale factor at natural origin",1,
            SCALEUNIT["unity",1],
            ID["EPSG",8805]],
        PARAMETER["False easting",28001.642,
            LENGTHUNIT["metre",1],
            ID["EPSG",8806]],
        PARAMETER["False northing",38744.572,
            LENGTHUNIT["metre",1],
            ID["EPSG",8807]]],
    CS[Cartesian,2],
        AXIS["(E)",east,
            ORDER[1],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]],
        AXIS["(N)",north,
            ORDER[2],
            LENGTHUNIT["metre",1,
                ID["EPSG",9001]]]]

It seems like the projected CRS are all in order (SVY21).

Mapping the geospatial data sets

tmap_mode('plot')
tmap mode set to plotting
tm_shape(mpsz_sf) +
  tm_fill() + # draw polygons without borders
  tm_borders() + # draw borders
  tm_shape(childcare_sf) +
  tm_dots() # draw points

You can also create a pin map using the Leaflet API:

tmap_mode('view')
tmap mode set to interactive viewing
tm_shape(childcare_sf) +
  tm_dots()

The advantage of this interactive pin map is it allows us to navigate and zoom around the map freely. We can also query the information of each simple feature (i.e. the point) by clicking of them. Last but not least, you can also change the background of the internet map layer. Currently, three internet map layers are provided. They are: ESRI.WorldGrayCanvas, OpenStreetMap, and ESRI.WorldTopoMap. The default is ESRI.WorldGrayCanvas.

Always remember to switch back to plot mode after the interactive map. This is because, each interactive mode will consume a connection. You should also avoid displaying ecessive numbers of interactive maps (i.e. not more than 10) in one RMarkdown document when publish on Netlify.

tmap_mode("plot")
tmap mode set to plotting

While simple features is popular, many geospatial packages still require sp’s Spatial class. Here is how we convert them back to Spatial:

childcare <- as_Spatial(childcare_sf)
mpsz <- as_Spatial(mpsz_sf)
sg <- as_Spatial(sg_sf)
summary(childcare)
Object of class SpatialPointsDataFrame
Coordinates:
               min      max
coords.x1 11203.01 45404.24
coords.x2 25667.60 49300.88
coords.x3     0.00     0.00
Is projected: TRUE 
proj4string :
[+proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
+x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs]
Number of points: 1545
Data attributes:
     Name           Description       
 Length:1545        Length:1545       
 Class :character   Class :character  
 Mode  :character   Mode  :character  
summary(mpsz)
Object of class SpatialPolygonsDataFrame
Coordinates:
        min      max
x  2667.538 56396.44
y 15748.721 50256.33
Is projected: TRUE 
proj4string :
[+proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
+x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs]
Data attributes:
    OBJECTID       SUBZONE_NO      SUBZONE_N          SUBZONE_C        
 Min.   :  1.0   Min.   : 1.000   Length:323         Length:323        
 1st Qu.: 81.5   1st Qu.: 2.000   Class :character   Class :character  
 Median :162.0   Median : 4.000   Mode  :character   Mode  :character  
 Mean   :162.0   Mean   : 4.625                                        
 3rd Qu.:242.5   3rd Qu.: 6.500                                        
 Max.   :323.0   Max.   :17.000                                        
    CA_IND           PLN_AREA_N         PLN_AREA_C          REGION_N        
 Length:323         Length:323         Length:323         Length:323        
 Class :character   Class :character   Class :character   Class :character  
 Mode  :character   Mode  :character   Mode  :character   Mode  :character  
                                                                            
                                                                            
                                                                            
   REGION_C           INC_CRC            FMEL_UPD_D             X_ADDR     
 Length:323         Length:323         Min.   :2014-12-05   Min.   : 5093  
 Class :character   Class :character   1st Qu.:2014-12-05   1st Qu.:21864  
 Mode  :character   Mode  :character   Median :2014-12-05   Median :28465  
                                       Mean   :2014-12-05   Mean   :27257  
                                       3rd Qu.:2014-12-05   3rd Qu.:31674  
                                       Max.   :2014-12-05   Max.   :50425  
     Y_ADDR        SHAPE_Leng        SHAPE_Area      
 Min.   :19579   Min.   :  871.5   Min.   :   39438  
 1st Qu.:31776   1st Qu.: 3709.6   1st Qu.:  628261  
 Median :35113   Median : 5211.9   Median : 1229894  
 Mean   :36106   Mean   : 6524.4   Mean   : 2420882  
 3rd Qu.:39869   3rd Qu.: 6942.6   3rd Qu.: 2106483  
 Max.   :49553   Max.   :68083.9   Max.   :69748299  
summary(sg)
Object of class SpatialPolygonsDataFrame
Coordinates:
        min      max
x  2663.926 56047.79
y 16357.981 50244.03
Is projected: TRUE 
proj4string :
[+proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
+x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs]
Data attributes:
    GDO_GID          MSLINK          MAPID    COSTAL_NAM       
 Min.   : 1.00   Min.   : 1.00   Min.   :0   Length:60         
 1st Qu.:15.75   1st Qu.:17.75   1st Qu.:0   Class :character  
 Median :30.50   Median :33.50   Median :0   Mode  :character  
 Mean   :30.50   Mean   :33.77   Mean   :0                     
 3rd Qu.:45.25   3rd Qu.:49.25   3rd Qu.:0                     
 Max.   :60.00   Max.   :67.00   Max.   :0                     

spatstat requires the analytical data in ppp object form. There is no direct way to convert a Spatial* classes into ppp object. We need to convert the Spatial classes* into Spatial object first.

What is ppp object form?

A ppp object is a type of data structure used in the spatstat package in R for handling spatial point pattern data. The ppp stands for “planar point pattern,” and it represents a collection of points that are typically used in the analysis of spatial point processes.

Points

The ppp object contains the coordinates of the points in the point pattern. These are stored as two numeric vectors, x and y, which represent the Cartesian coordinates of the points.

Window

This component defines the observation window, i.e., the area in which the points are observed. The window can be a simple rectangle or a more complex polygonal region. The window is typically an object of class owin, which specifies the boundaries within which the points are contained.

Marks

The ppp object can include additional data associated with each point, known as “marks.” Marks can be any type of data, such as categorical labels, numerical values, or even more complex data structures. Marks add a second level of information to the point pattern, allowing for marked point process analysis.

Converting to ppp

First, we have to convert the sf Spatial classes into generic sp objects.

childcare_sp <- as(childcare, "SpatialPoints")
sg_sp <- as(sg, "SpatialPolygons")
summary(childcare_sp)
Object of class SpatialPoints
Coordinates:
               min      max
coords.x1 11203.01 45404.24
coords.x2 25667.60 49300.88
coords.x3     0.00     0.00
Is projected: TRUE 
proj4string :
[+proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
+x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +towgs84=0,0,0,0,0,0,0
+units=m +no_defs]
Number of points: 1545
summary(sg_sp)
Object of class SpatialPolygons
Coordinates:
        min      max
x  2663.926 56047.79
y 16357.981 50244.03
Is projected: TRUE 
proj4string :
[+proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1
+x_0=28001.642 +y_0=38744.572 +datum=WGS84 +units=m +no_defs]

Next, we need to convert the generic sp objects into spatstat’s ppp object.

childcare_ppp <- as.ppp(childcare_sf)
Warning in as.ppp.sf(childcare_sf): only first attribute column is used for
marks
childcare_ppp
Marked planar point pattern: 1545 points
marks are of storage type  'character'
window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units

Now, let’s plot childcare_ppp:

plot(childcare_ppp)
Warning in default.charmap(ntypes, chars): Too many types to display every type
as a different character
Warning: Only 10 out of 1545 symbols are shown in the symbol map

summary(childcare_ppp)
Marked planar point pattern:  1545 points
Average intensity 1.91145e-06 points per square unit

Coordinates are given to 11 decimal places

marks are of type 'character'
Summary:
   Length     Class      Mode 
     1545 character character 

Window: rectangle = [11203.01, 45404.24] x [25667.6, 49300.88] units
                    (34200 x 23630 units)
Window area = 808287000 square units

In spatial point pattern analysis, the concept of duplicates or coincident points refers to multiple points that occupy the exact same location in space.

Many statistical methods in spatial point pattern analysis are based on the assumption that the underlying point process is simple. A simple point process means that no two points in the process can occupy the exact same location (i.e., they cannot be coincident).

If points are coincident, this assumption is violated, and the statistical methods that rely on this assumption may produce invalid or misleading results.

Thus, let’s check if there are any duplicate points:

any(duplicated(childcare_ppp))
[1] FALSE

As you can see, there doesn’t seem to be any duplicated data point.

To count the number of co-indicence point, we will use the multiplicity() function as shown in the code chunk below.

multiplicity(childcare_ppp)
   [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
  [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [778] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [815] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [852] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [889] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [926] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [963] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1000] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1037] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1074] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1111] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1148] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1185] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1222] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1259] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1296] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1333] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1370] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1407] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1444] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1481] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[1518] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

If we want to know how many locations have more than one point event, we can use the code chunk below:

sum(multiplicity(childcare_ppp) > 1)
[1] 0

To view the locations of any duplicate point events, we will plot childcare data by using the code chunk below:

coincident_points <- childcare_sf[duplicated(st_geometry(childcare_sf)), ]
tmap_mode('view')
tmap mode set to interactive viewing
tm_shape(coincident_points) +
  tm_dots(alpha=0.4, 
          size=0.05)
tmap_mode("plot")
tmap mode set to plotting

There are three ways to overcome this problem. The easiest way is to delete the duplicates. But, that will also mean that some useful point events will be lost.

The second solution is use jittering. It is used to add a small amount of random noise to the coordinates of points in a spatial point pattern. This process, often referred to as “jittering,” helps to separate coincident points (points that have the exact same coordinates) by moving them slightly apart. This can be particularly useful in spatial analyses where coincident points might violate assumptions, such as the assumption that points are not exactly coincident.

The third solution is to make each point “unique” and then attach the duplicates of the points to the patterns as marks, as attributes of the points. Then you would need analytical techniques that take into account these marks.

The code chunk below implements the jittering approach.

childcare_ppp_jit <- rjitter(childcare_ppp, 
                             retry=TRUE, 
                             nsim=1, 
                             drop=TRUE)

Let’s see if there are any duplicates now:

any(duplicated(childcare_ppp_jit))
[1] FALSE

Creating owin object

When analysing spatial point patterns, it is a good practice to confine the analysis with a geographical area like Singapore boundary. In spatstat, an object called owin is specially designed to represent this polygonal region.

The code chunk below is used to covert sg SpatialPolygon object into owin object of spatstat.

sg_owin <- as.owin(sg_sf)

The ouput object can be displayed by using plot() function

plot(sg_owin)

summary(sg_owin)
Window: polygonal boundary
50 separate polygons (1 hole)
                 vertices         area relative.area
polygon 1 (hole)       30     -7081.18     -9.76e-06
polygon 2              55     82537.90      1.14e-04
polygon 3              90    415092.00      5.72e-04
polygon 4              49     16698.60      2.30e-05
polygon 5              38     24249.20      3.34e-05
polygon 6             976  23344700.00      3.22e-02
polygon 7             721   1927950.00      2.66e-03
polygon 8            1992   9992170.00      1.38e-02
polygon 9             330   1118960.00      1.54e-03
polygon 10            175    925904.00      1.28e-03
polygon 11            115    928394.00      1.28e-03
polygon 12             24      6352.39      8.76e-06
polygon 13            190    202489.00      2.79e-04
polygon 14             37     10170.50      1.40e-05
polygon 15             25     16622.70      2.29e-05
polygon 16             10      2145.07      2.96e-06
polygon 17             66     16184.10      2.23e-05
polygon 18           5195 636837000.00      8.78e-01
polygon 19             76    312332.00      4.31e-04
polygon 20            627  31891300.00      4.40e-02
polygon 21             20     32842.00      4.53e-05
polygon 22             42     55831.70      7.70e-05
polygon 23             67   1313540.00      1.81e-03
polygon 24            734   4690930.00      6.47e-03
polygon 25             16      3194.60      4.40e-06
polygon 26             15      4872.96      6.72e-06
polygon 27             15      4464.20      6.15e-06
polygon 28             14      5466.74      7.54e-06
polygon 29             37      5261.94      7.25e-06
polygon 30            111    662927.00      9.14e-04
polygon 31             69     56313.40      7.76e-05
polygon 32            143    145139.00      2.00e-04
polygon 33            397   2488210.00      3.43e-03
polygon 34             90    115991.00      1.60e-04
polygon 35             98     62682.90      8.64e-05
polygon 36            165    338736.00      4.67e-04
polygon 37            130     94046.50      1.30e-04
polygon 38             93    430642.00      5.94e-04
polygon 39             16      2010.46      2.77e-06
polygon 40            415   3253840.00      4.49e-03
polygon 41             30     10838.20      1.49e-05
polygon 42             53     34400.30      4.74e-05
polygon 43             26      8347.58      1.15e-05
polygon 44             74     58223.40      8.03e-05
polygon 45            327   2169210.00      2.99e-03
polygon 46            177    467446.00      6.44e-04
polygon 47             46    699702.00      9.65e-04
polygon 48              6     16841.00      2.32e-05
polygon 49             13     70087.30      9.66e-05
polygon 50              4      9459.63      1.30e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                     (53380 x 33890 units)
Window area = 725376000 square units
Fraction of frame area: 0.401

Combining point events object and owin object

In this last step of geospatial data wrangling, we will extract childcare events that are located within Singapore by using the code chunk below.

childcareSG_ppp = childcare_ppp[sg_owin]
summary(childcareSG_ppp)
Marked planar point pattern:  1545 points
Average intensity 2.129929e-06 points per square unit

Coordinates are given to 11 decimal places

marks are of type 'character'
Summary:
   Length     Class      Mode 
     1545 character character 

Window: polygonal boundary
50 separate polygons (1 hole)
                 vertices         area relative.area
polygon 1 (hole)       30     -7081.18     -9.76e-06
polygon 2              55     82537.90      1.14e-04
polygon 3              90    415092.00      5.72e-04
polygon 4              49     16698.60      2.30e-05
polygon 5              38     24249.20      3.34e-05
polygon 6             976  23344700.00      3.22e-02
polygon 7             721   1927950.00      2.66e-03
polygon 8            1992   9992170.00      1.38e-02
polygon 9             330   1118960.00      1.54e-03
polygon 10            175    925904.00      1.28e-03
polygon 11            115    928394.00      1.28e-03
polygon 12             24      6352.39      8.76e-06
polygon 13            190    202489.00      2.79e-04
polygon 14             37     10170.50      1.40e-05
polygon 15             25     16622.70      2.29e-05
polygon 16             10      2145.07      2.96e-06
polygon 17             66     16184.10      2.23e-05
polygon 18           5195 636837000.00      8.78e-01
polygon 19             76    312332.00      4.31e-04
polygon 20            627  31891300.00      4.40e-02
polygon 21             20     32842.00      4.53e-05
polygon 22             42     55831.70      7.70e-05
polygon 23             67   1313540.00      1.81e-03
polygon 24            734   4690930.00      6.47e-03
polygon 25             16      3194.60      4.40e-06
polygon 26             15      4872.96      6.72e-06
polygon 27             15      4464.20      6.15e-06
polygon 28             14      5466.74      7.54e-06
polygon 29             37      5261.94      7.25e-06
polygon 30            111    662927.00      9.14e-04
polygon 31             69     56313.40      7.76e-05
polygon 32            143    145139.00      2.00e-04
polygon 33            397   2488210.00      3.43e-03
polygon 34             90    115991.00      1.60e-04
polygon 35             98     62682.90      8.64e-05
polygon 36            165    338736.00      4.67e-04
polygon 37            130     94046.50      1.30e-04
polygon 38             93    430642.00      5.94e-04
polygon 39             16      2010.46      2.77e-06
polygon 40            415   3253840.00      4.49e-03
polygon 41             30     10838.20      1.49e-05
polygon 42             53     34400.30      4.74e-05
polygon 43             26      8347.58      1.15e-05
polygon 44             74     58223.40      8.03e-05
polygon 45            327   2169210.00      2.99e-03
polygon 46            177    467446.00      6.44e-04
polygon 47             46    699702.00      9.65e-04
polygon 48              6     16841.00      2.32e-05
polygon 49             13     70087.30      9.66e-05
polygon 50              4      9459.63      1.30e-05
enclosing rectangle: [2663.93, 56047.79] x [16357.98, 50244.03] units
                     (53380 x 33890 units)
Window area = 725376000 square units
Fraction of frame area: 0.401
plot(childcareSG_ppp)
Warning in default.charmap(ntypes, chars): Too many types to display every type
as a different character
Warning: Only 10 out of 1545 symbols are shown in the symbol map

First-order Spatial Point Patterns Analysis

In this section, you will learn how to perform first-order SPPA by using spatstat package. The hands-on exercise will focus on:

  • deriving kernel density estimation (KDE) layer for visualising and exploring the intensity of point processes,

  • performing Confirmatory Spatial Point Patterns Analysis by using Nearest Neighbour statistics.

Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric method (does not assume any specific underlying distribution for the data) used to estimate the probability density function (PDF) of a random variable based on a finite sample of data points. In spatial analysis, KDE is often used to estimate the intensity or density of events (such as crime incidents, animal sightings, or disease cases) across a geographical area.

  • Clustered (groups of POI close together)

  • Random (spread out but with irregular spacing)

  • Uniform (spread out but have regular spacing)

Mapping stuff out is exploratory. To quantify it we can employ hypothesis testing.

We essentially count the number of points of interest in a particular area (which we can specify) and calculate the density (or intensity).

In this section, you will learn how to compute the kernel density estimation (KDE) of childcare services in Singapore.

Automatic bandwidth selection method

Note: Even though it is called “automatic bandwidth”, they are considered fixed bandwidth methods (you calculate density with the same area throughout). Use adaptive bandwidth instead if you have highly skewed data. Use fixed bandwidth if you are comparing KDE between regions.x`

The code chunk below computes a kernel density by using the following configurations of density() of spatstat:

  • bw.diggle() automatic bandwidth selection method. Other recommended methods are bw.CvL(), bw.scott() or bw.ppl().

  • The smoothing kernel used is gaussian, which is the default. Other smoothing methods are: “epanechnikov”, “quartic” or “disc”.

  • The edge parameter controls whether edge correction should be applied. Edge correction accounts for the fact that points near the boundaries of the observation window have fewer neighbors and, without correction, could lead to underestimation of density near the edges.

  • Setting edge = TRUE ensures that edge correction is applied, which adjusts the density estimate near the borders to compensate for this bias.

    • The intensity estimate is corrected for edge effect bias by using method described by Jones (1993) and Diggle (2010, equation 18.9). The default is FALSE.
kde_childcareSG_bw <- density(childcareSG_ppp,
                              sigma=bw.diggle,
                              edge=TRUE,
                            kernel="gaussian") 

The plot() function of Base R is then used to display the kernel density derived.

plot(kde_childcareSG_bw)

The density values of the output range from 0 to 0.000035 which is way too small to comprehend. This is because the default unit of measurement of svy21 is in meter. As a result, the density values computed is in “number of points per square meter”.

Before we move on to next section, it is good to know that you can retrieve the bandwidth used to compute the kde layer by using the code chunk below.

bw <- bw.diggle(childcareSG_ppp)
bw
   sigma 
298.4095 

The bandwidth in the context of Kernel Density Estimation (KDE) is a critical parameter that determines the level of smoothing applied to the data when estimating the density. It controls how much each data point influences the estimate of the density around it.

To convert the unit of measurement from meter to kilometer:

childcareSG_ppp.km <- rescale.ppp(childcareSG_ppp, 1000, "km")

Now, we can re-run density() using the resale data set and plot the output KDE map.

kde_childcareSG.bw <- density(childcareSG_ppp.km, sigma=bw.diggle, edge=TRUE, kernel="gaussian")
plot(kde_childcareSG.bw)

Working with different bandwidth methods

bw.CvL(childcareSG_ppp.km)
   sigma 
4.543278 
bw.scott(childcareSG_ppp.km)
 sigma.x  sigma.y 
2.224898 1.450966 
bw.ppl(childcareSG_ppp.km)
    sigma 
0.3897114 
bw.diggle(childcareSG_ppp.km)
    sigma 
0.2984095 

Baddeley et. (2016) suggested the use of the bw.ppl() algorithm because in their experience it tends to produce the more appropriate values when the pattern consists predominantly of tight clusters. But they also insist that if the purpose of once study is to detect a single tight cluster in the midst of random noise then the bw.diggle() method seems to work best.

The code chunk below will be used to compare the output of using bw.diggle and bw.ppl methods:

kde_childcareSG.ppl <- density(childcareSG_ppp.km, 
                               sigma=bw.ppl, 
                               edge=TRUE,
                               kernel="gaussian")
par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "bw.diggle")
plot(kde_childcareSG.ppl, main = "bw.ppl")

Working with different kernel methods

By default, the kernel method used in density.ppp() is gaussian. But there are three other options, namely: Epanechnikov, Quartic and Discs.

The code chunk below will be used to compute three more kernel density estimations by using these three kernel function.

These are interpolations to deal with areas that has less data.

If you use Gaussian, you sometimes get negative intensity values, so try to avoid it. Try quartic instead.

par(mfrow=c(2,2))
plot(density(childcareSG_ppp.km, 
             sigma=bw.ppl, 
             edge=TRUE, 
             kernel="gaussian"), 
     main="Gaussian")
plot(density(childcareSG_ppp.km, 
             sigma=bw.ppl, 
             edge=TRUE, 
             kernel="epanechnikov"), 
     main="Epanechnikov")
Warning in density.ppp(childcareSG_ppp.km, sigma = bw.ppl, edge = TRUE, :
Bandwidth selection will be based on Gaussian kernel
plot(density(childcareSG_ppp.km, 
             sigma=bw.ppl, 
             edge=TRUE, 
             kernel="quartic"), 
     main="Quartic")
Warning in density.ppp(childcareSG_ppp.km, sigma = bw.ppl, edge = TRUE, :
Bandwidth selection will be based on Gaussian kernel
plot(density(childcareSG_ppp.km, 
             sigma=bw.ppl, 
             edge=TRUE, 
             kernel="disc"), 
     main="Disc")
Warning in density.ppp(childcareSG_ppp.km, sigma = bw.ppl, edge = TRUE, :
Bandwidth selection will be based on Gaussian kernel

Manually setting the bandwidth

Since the unit of measurement has changed to kilometres, the sigma value used is 0.6 instead of 600 metres.

kde_childcareSG_600 <- density(childcareSG_ppp.km, sigma=0.6, edge=TRUE, kernel="gaussian")
plot(kde_childcareSG_600)

Why would you use fixed bandwidth?

This approach is appropriate in several situations, particularly when the underlying data is relatively uniform in its distribution (extremely unlikely unless the area of analysis is small) and when the focus is on identifying broad trends or when the study area does not exhibit significant variations in density.

How would you know if your data is highly skewed?

You can either visually inspect the plot, or use summary statistics.

quadrat.test(childcareSG_ppp)
Warning: Some expected counts are small; chi^2 approximation may be inaccurate

    Chi-squared test of CSR using quadrat counts

data:  childcareSG_ppp
X2 = 676.18, df = 20, p-value < 2.2e-16
alternative hypothesis: two.sided

Quadrats: 21 tiles (irregular windows)

A significant result (low p-value) indicates that the points are not uniformly distributed and may be highly skewed, with clustering in certain areas.

Using adaptive bandwidth

kde_childcareSG_adaptive <- adaptive.density(childcareSG_ppp.km, method="kernel")
plot(kde_childcareSG_adaptive)

We can compare the fixed and adaptive kernel density estimation outputs by using the code chunk below.

Unlike fixed bandwidth, we adjust the area according to the density of points.

par(mfrow=c(1,2))
plot(kde_childcareSG.bw, main = "Fixed bandwidth")
plot(kde_childcareSG_adaptive, main = "Adaptive bandwidth")

Converting KDE output into grid object

The result is the same, we just convert it so that it is suitable for mapping purposes.

gridded_kde_childcareSG_bw <- as(kde_childcareSG.bw, "SpatialGridDataFrame")
spplot(gridded_kde_childcareSG_bw)

Next, we will convert the gridded kernel density objects into RasterLayer object by using raster() of raster package.

A raster is a type of data structure commonly used in Geographic Information Systems (GIS) to represent spatial data. It is a grid-based format that divides a geographic area into a matrix of cells or pixels, where each cell contains a value representing information such as elevation, temperature, land cover, or any other spatial attribute.

kde_childcareSG_bw_raster <- raster(kde_childcareSG.bw)

Let us take a look at the properties of kde_childcareSG_bw_raster RasterLayer.

kde_childcareSG_bw_raster
class      : RasterLayer 
dimensions : 128, 128, 16384  (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348  (x, y)
extent     : 2.663926, 56.04779, 16.35798, 50.24403  (xmin, xmax, ymin, ymax)
crs        : NA 
source     : memory
names      : layer 
values     : -8.476185e-15, 28.51831  (min, max)

Notice that the crs property is NA.

The code chunk below will be used to include the CRS information on kde_childcareSG_bw_raster RasterLayer.

projection(kde_childcareSG_bw_raster) <- CRS("+init=EPSG:3414")
kde_childcareSG_bw_raster
class      : RasterLayer 
dimensions : 128, 128, 16384  (nrow, ncol, ncell)
resolution : 0.4170614, 0.2647348  (x, y)
extent     : 2.663926, 56.04779, 16.35798, 50.24403  (xmin, xmax, ymin, ymax)
crs        : +proj=tmerc +lat_0=1.36666666666667 +lon_0=103.833333333333 +k=1 +x_0=28001.642 +y_0=38744.572 +ellps=WGS84 +units=m +no_defs 
source     : memory
names      : layer 
values     : -8.476185e-15, 28.51831  (min, max)
tm_shape(kde_childcareSG_bw_raster) + 
  tm_raster("layer", palette = "viridis") +
  tm_layout(legend.position = c("right", "bottom"), frame = FALSE)

Notice that the raster values are encoded explicitly onto the raster pixel using the values in “v”” field.

Comparing Spatial Point Patterns using KDE

In this section, you will learn how to compare KDE of childcare at Ponggol, Tampines, Chua Chu Kang and Jurong West planning areas.

The code chunk below will be used to extract the target planning areas.

pg <- mpsz_sf %>%
  filter(PLN_AREA_N == "PUNGGOL")
tm <- mpsz_sf %>%
  filter(PLN_AREA_N == "TAMPINES")
ck <- mpsz_sf %>%
  filter(PLN_AREA_N == "CHOA CHU KANG")
jw <- mpsz_sf %>%
  filter(PLN_AREA_N == "JURONG WEST")

Plotting target planning areas:

par(mfrow=c(2,2))
plot(pg, main = "Ponggol")
Warning: plotting the first 9 out of 15 attributes; use max.plot = 15 to plot
all

plot(tm, main = "Tampines")
Warning: plotting the first 9 out of 15 attributes; use max.plot = 15 to plot
all

plot(ck, main = "Choa Chu Kang")
Warning: plotting the first 10 out of 15 attributes; use max.plot = 15 to plot
all

plot(jw, main = "Jurong West")
Warning: plotting the first 9 out of 15 attributes; use max.plot = 15 to plot
all

Now, we will convert these sf objects into owin objects that is required by spatstat.

pg_owin = as.owin(pg)
tm_owin = as.owin(tm)
ck_owin = as.owin(ck)
jw_owin = as.owin(jw)

By using the code chunk below, we are able to extract childcare that is within the specific region to do our analysis later on.

Now why would you bother to split them up? To analyse spatial randomness it is essential to exclude regions like the airport where there are no childcare centres.

childcare_pg_ppp = childcare_ppp_jit[pg_owin]
childcare_tm_ppp = childcare_ppp_jit[tm_owin]
childcare_ck_ppp = childcare_ppp_jit[ck_owin]
childcare_jw_ppp = childcare_ppp_jit[jw_owin]

Next, rescale.ppp() function is used to trasnform the unit of measurement from metre to kilometre.

childcare_pg_ppp.km = rescale.ppp(childcare_pg_ppp, 1000, "km")
childcare_tm_ppp.km = rescale.ppp(childcare_tm_ppp, 1000, "km")
childcare_ck_ppp.km = rescale.ppp(childcare_ck_ppp, 1000, "km")
childcare_jw_ppp.km = rescale.ppp(childcare_jw_ppp, 1000, "km")

The code chunk below is used to plot these four study areas and the locations of the childcare centres.

par(mfrow=c(2,2))
plot(childcare_pg_ppp.km, main="Punggol")
Warning in default.charmap(ntypes, chars): Too many types to display every type
as a different character
Warning: Only 10 out of 61 symbols are shown in the symbol map
plot(childcare_tm_ppp.km, main="Tampines")
Warning in default.charmap(ntypes, chars): Too many types to display every type
as a different character
Warning: Only 10 out of 89 symbols are shown in the symbol map
plot(childcare_ck_ppp.km, main="Choa Chu Kang")
Warning in default.charmap(ntypes, chars): Too many types to display every type
as a different character
Warning: Only 10 out of 61 symbols are shown in the symbol map
plot(childcare_jw_ppp.km, main="Jurong West")
Warning in default.charmap(ntypes, chars): Too many types to display every type
as a different character
Warning: Only 10 out of 88 symbols are shown in the symbol map

The code chunk below will be used to compute the KDE of these four planning area. bw.diggle method is used to derive the bandwidth of each

par(mfrow=c(2,2))
plot(density(childcare_pg_ppp.km, 
             sigma=bw.diggle, 
             edge=TRUE, 
             kernel="gaussian"),
     main="Punggol")
plot(density(childcare_tm_ppp.km, 
             sigma=bw.diggle, 
             edge=TRUE, 
             kernel="gaussian"),
     main="Tempines")
plot(density(childcare_ck_ppp.km, 
             sigma=bw.diggle, 
             edge=TRUE, 
             kernel="gaussian"),
     main="Choa Chu Kang")
plot(density(childcare_jw_ppp.km, 
             sigma=bw.diggle, 
             edge=TRUE, 
             kernel="gaussian"),
     main="JUrong West")

For comparison purposes, we will use 250m as the bandwidth.

par(mfrow=c(2,2))
plot(density(childcare_ck_ppp.km, 
             sigma=0.25, 
             edge=TRUE, 
             kernel="gaussian"),
     main="Choa Chu Kang")
plot(density(childcare_jw_ppp.km, 
             sigma=0.25, 
             edge=TRUE, 
             kernel="gaussian"),
     main="Jurong West")
plot(density(childcare_pg_ppp.km, 
             sigma=0.25, 
             edge=TRUE, 
             kernel="gaussian"),
     main="Punggol")
plot(density(childcare_tm_ppp.km, 
             sigma=0.25, 
             edge=TRUE, 
             kernel="gaussian"),
     main="Tampines")

Nearest neighbour analysis

In this section, we will perform the Clark-Evans test of aggregation for a spatial point pattern by using clarkevans.test() of statspat.

The test hypotheses are:

Ho = The distribution of childcare services are randomly distributed.

H1= The distribution of childcare services are not randomly distributed.

The 95% confident interval will be used.

clarkevans.test(childcareSG_ppp,
                correction="none",
                clipregion="sg_owin",
                alternative=c("clustered"),
                nsim=99)

    Clark-Evans test
    No edge correction
    Z-test

data:  childcareSG_ppp
R = 0.55631, p-value < 2.2e-16
alternative hypothesis: clustered (R < 1)
  • R = 0.55631:

    • The R value is the Clark-Evans ratio, which compares the observed average nearest neighbor distance to the expected nearest neighbor distance for a random distribution.

    • R = 1 indicates a random distribution.

    • R < 1 indicates clustering (i.e., the points are closer to each other than expected under randomness).

    • R > 1 indicates dispersion (i.e., the points are more evenly spread out than expected under randomness).

    In this case, R = 0.55631, which is significantly less than 1, indicating that the childcare services are clustered.

  • p-value < 2.2e-16:

    • The p-value represents the probability of observing such a clustered pattern under the null hypothesis of randomness.

    • A p-value less than the significance level (α = 0.05) allows us to reject the null hypothesis. In this case, the p-value is extremely small (essentially zero), far below the 0.05 threshold.

  • Conclusion:

    • Since R < 1 and the p-value is extremely small, we reject the null hypothesis.

    • This means we have strong evidence to conclude that the distribution of childcare services in Singapore is not randomly distributed. Instead, the distribution is clustered—that is, the childcare services tend to be closer together than what would be expected under a random spatial distribution.

In the code chunk below, clarkevans.test() of spatstat is used to performs Clark-Evans test of aggregation for childcare centre in Choa Chu Kang planning area.

  • Null Hypothesis (Ho): The distribution of childcare services is randomly distributed (CSR, Complete Spatial Randomness).

  • Alternative Hypothesis (H1): The distribution of childcare services is not randomly distributed. This includes both possibilities: the points may be either clustered (R < 1) or regularly spaced (R > 1). If the index is close or equal to 1, the patterns exhibit randomness.

Regularity (also known as dispersion) in the context of spatial point patterns refers to a distribution where points are more evenly spaced than would be expected under complete spatial randomness (CSR). Essentially, regularity or dispersion implies that points are systematically spread out, avoiding clustering, and often maintaining a more uniform distance from each other.

clarkevans.test(childcare_ck_ppp,
                correction="none",
                clipregion=NULL,
                alternative=c("two.sided"),
                nsim=999)

    Clark-Evans test
    No edge correction
    Z-test

data:  childcare_ck_ppp
R = 0.91837, p-value = 0.2226
alternative hypothesis: two-sided
  • Since the p-value is large (0.4801), you fail to reject the null hypothesis (Ho). This means that the observed pattern of childcare services in childcare_ck_ppp is not significantly different from random.

  • Conclusion: The distribution of childcare services is consistent with complete spatial randomness (CSR). There is no statistically significant evidence to suggest that the points are either clustered or regularly spaced.

Note: Since you are using more simulation iterations, the time taken to run the tests will be longer. Since this is essentially Monte Carlo simulation, to satisfy a 95% confidence interval, we need a minimum of 39 for convergence. 99, 199, 999 are common values. We need a greater amount to achieve a more stable result. Note that 99 means that you are running it 100 times.

Note that it is typical for randomness to occur when the area of analysis is high. It is important to figure out that at what distance does clustering occur and at what distance randomness starts to appear again. This can be done using the L function. We can further modify the L function to make it from a diagonal to a straight line. We have lots of different functions, like G function (zonal - within a ring buffer, how many points are there, and slowly draw more and more bigger rings, so unlike K function it is not cumulative, there is no straight version of it) or K function (the L function is the same as the K function except a transformation is applied to the result to make the graph straight, making it easier to interpret). Each employ a different shape but they are all distance based. Some analyse distances zone by zone while some are cumulative.

Also, if you need a constant result, you have to set the seed. You only have to set the seed once at the top of the document for maximum reproducibility.

1. One-Sided Test (Clustered or Dispersed):

a. Testing for Clustering:

  • When to Use:

    • Use the one-sided test with the alternative = "clustered" option when you have a prior expectation or hypothesis that the points are more likely to be clustered rather than dispersed.

    • Example: If you are studying the distribution of businesses that tend to cluster in urban centers, you might hypothesize that these businesses are more likely to be clustered due to factors like proximity to customers or each other.

  • Interpretation:

    • R < 1: Supports the hypothesis that the points are clustered.

    • R > 1: Would indicate regular spacing, but this result would be unexpected and not directly tested in this scenario.

b. Testing for Regular Spacing (Dispersion):

  • When to Use:

    • Use the one-sided test with alternative = "regular" (or sometimes alternative = "dispersed") when you suspect that points are more regularly spaced, perhaps due to competition, territoriality, or other factors that push points apart.

    • Example: In ecology, if you are studying tree locations in a forest where trees are expected to be evenly spaced due to competition for resources, you might test for regular spacing.

  • Interpretation:

    • R > 1: Supports the hypothesis that the points are regularly spaced.

    • R < 1: Would indicate clustering, but this result would be unexpected and not directly tested in this scenario.

2. Two-Sided Test:

  • When to Use:

    • Use the two-sided test with alternative = "two.sided" when you do not have a specific expectation about whether the points are clustered or dispersed, and you want to test for any significant deviation from complete spatial randomness (CSR).

    • This is appropriate when you are exploring the data without a strong prior hypothesis about the nature of the spatial distribution.

    • Example: If you are conducting an exploratory analysis of a new dataset and are unsure whether the points might be clustered or dispersed, the two-sided test is appropriate.

  • Interpretation:

    • R < 1 with a significant p-value: Indicates clustering.

    • R > 1 with a significant p-value: Indicates regular spacing.

    • R ≈ 1 with a non-significant p-value: Indicates a random distribution.

3. Choosing Edge Correction:

  • Edge Correction (correction parameter):

    • Use edge correction if your study area is bounded (e.g., a city boundary, nature reserve) and the points near the boundary might have fewer neighbors simply due to being near the edge. This correction helps adjust for this bias.

    • If your study area is very large or if edge effects are not a concern, you might choose correction = "none", as in your examples.

clarkevans.test(childcare_tm_ppp,
                correction="none",
                clipregion=NULL,
                alternative=c("two.sided"),
                nsim=999)

    Clark-Evans test
    No edge correction
    Z-test

data:  childcare_tm_ppp
R = 0.77178, p-value = 3.806e-05
alternative hypothesis: two-sided
  • Since the p-value is small (0.0004794), you reject the null hypothesis (Ho). This means that the observed pattern of childcare services in childcare_tm_ppp is significantly different from random.

  • Conclusion: The distribution of childcare services is consistent with complete spatial randomness (CSR). There is statistically significant evidence to suggest that the points are either clustered or regularly spaced.